
Part of Speech Tagging using Hidden Markov Models, the Viterbi
Algorithm, and Baum-Welch Expectation Maximization

Tyler Wengert
UCCS

twengert@uccs.edu

Abstract
Part of Speech Tagging (POS Tagging) is
when each word in a corpus is labeled with
its part of speech. This problem has many
challenges due to the ambiguous nature of
language; many times, a word can take on
different parts of speech in different con-
texts, or a sentence can be interpreted to
have various meanings that change how
that words function. POS Tagging is ex-
tremely useful in evaluating language and
in preparing data for other Natural Lan-
guage Processing (NLP) tasks.

1 Introduction

When it comes to accomplishing POS Tagging
tasks successfully, statistical language models
have yielded very strong results. The Hidden
Markov Model (HMM) is based off of many sta-
tistical language modelling principals as well
as the Markov Assumption, which states that
a system’s next state is dependent only on its
current state, not any of the previous states
that the machine has visited. This is a memory-
less scheme. To construct an HMM, you need
to build a set of emission and transition proba-
bilities from an already tagged data set. This
certainly limits the HMM approach to POS
Tagging, since you are required to have a pre-
tagged corpus to train you model.
This weakness is addressed by using the

Baum-Welch Algorithm for Expectation Max-
imization. Using a standard HMM model as
the base, the model is initialized with random
transition and emission probabilities and run
over a series of steps, updating the probabilities
at each step, to hopefully learn proper proba-
bilities over time. This type of approach was
utilized by (Gao and Johnson, 2008).

Once these models are trained, they of course
need a way to predict tags for a given sequence

of un-tagged words. For both of these model
types, the Viterbi algorithm is useful for the
final predictions. The Viterbi algorithm is a
Dynamic Programming (DP) algorithm, and
therefore improves the computation time for
predictions over its non-DP counterparts. The
prediction it outputs is the Viterbi path, or
the most likely tagging path through the given
sequence of words.

2 Related Works

In the early 20th century, a Russian mathemati-
cian, Andrey Markov, and his younger brother
Vladimir pioneered work in probabilistic mod-
els for random sequences. Working under the
assumption that the next state of the system
is determined entirely by the current state and
is not effected by the history of the system.
Markov realized that his system showed strong
results in modelling the vowels and consonants
in the Russian language.
The Hidden Markov Model is a Markov

Model where the states in the network are
hidden from observation. Blunsom (2004) de-
scribes in great detail popular HMM implemen-
tations for POS tagging using the Viterbi Al-
gorithm. Researchers such as (Alva and Hegde,
2016) have produced a variety of transition
and emission probability tables from corpora
of different types and lengths. Paired with the
Viterbi Algorithm, which is a DP algorithm
for finding the most probable path through the
states in an HMM, A trained HMM can pro-
duce excellent results, as in (Al Shamsi and
Guessoum, 2006) and (Nambiar et al., 2019).
To take the approach even further, re-

searchers like (Gao and Johnson, 2008) com-
bined the HMM with the Expectation Maxi-
mization algorithm to train a model without



having a pre-tagged training corpus. The HMM
is initialized with random transition and emis-
sion probabilities and run through a set of itera-
tions to eventually learn effective probabilities.

3 Implementation

This program was built using Python 3.7.6 64-
bit using the IDLE IDE. The program uses the
NumPy package (Oliphant, 2006) for handling
the data arrays, NLTK (Loper and Bird, 2002)
for pre-processing of the corpora, and Pandas
(Wes McKinney, 2010) for further organization
of the NumPY arrays.

3.1 Hidden Markov Model

The key parts of the HMM are the transition
and emission probabilities calculated from the
corpus. The transition probabilities represent
the likely that one tag will follow another. For
example, if the current word is a noun, what is
the likelihood that the next word is a verb or an
adjective. Emission probabilities represent the
likelihood that a given word will be a particular
tag type. For example, the chance that the
word book will be a verb or a noun.

The formula for calculating the emission
probabilities is as follows:

occurrences(word, tag_type)

occurrences(tag_type)

The formula for calculating the transition
probabilities is as follows:

co− occurrences(tag_type_1, tag_type_2)

all − co− occurrences(tag_type_1)

3.2 Viterbi Algorithm

The Viterbi Algorithm is a DP algorithm that
was created in 1967 by Andrew Viterbi, as a
decoding algorithm for digital communication.

The algorithm is also commonly used to find
the most probable path through a branching
field of probabilities. This best path is known
as the Viterbi Path, and is the sequence of
observations that the model will output as its
predicted tags for a given sequence of words.

3.3 Baum-Welch Expectation Maximization

The Baum-Welch Algorithm is an adaptation
of traditional Expectation Maximization algo-
rithms specifically tuned to maximizing the
probability tables in a Markov Model. It
was first described by (Baum et al., 1970),
who showed that the probability tables of any
Markov Chain could be iteratively be maxi-
mized. In NLP, this allows for the training of
an HMM for POS Tagging without the use of
pre-tagged data.

4 Results

4.1 HMM with Viterbi Algorithm

Test Run Test Accuracy
1 83%
2 87%
3 86%
4 82%
5 81%
6 92%
7 81%
8 93%
9 84%
10 87%

Average Accuracy 85.6%

The model was run on a random 90:10 training
data split 10 separate times. Sentences from
the input file were mixed up, but word order
within the sentences was maintained.

The final HMM model and Viterbi implemen-
tation performed very well, despite the small
size of the available training data. The model
showed an overall average accuracy of nearly
86%.



4.2 Baum-Welch with Viterbi Algorithm
Test Run Test Accuracy

1 11%
2 30%
3 8%
4 17%
5 16%
6 14%
7 10%
8 17%
9 21%
10 14%

Average Accuracy 15.8%
In analyzing the predictions this model gave,

it seemed clear that it was starting to pick up
on some of the occurrence patterns in the text,
but didn’t have any reference as to which tags
belonged to which types of relationships. For
example many times, nouns and pronouns were
both labeled as nouns, or the majority of pro-
nouns were labeled as nouns while the majority
of nouns were labeled as pronouns. Perhaps
the learning could be improved if instead of
starting from just an unlabelled set, the ma-
chine was also given an ultra-small (no more
than a handful of sentences) labelled sequence
to use as a sort of anchor to gauge what tags
belong to which types of relationships.

5 Further Work and Improvements

Our data set was fairly small and had a small
vocabulary, and so the problem was largely elim-
inated here, but one challenge that becomes
more exaggerated with larger data sets is the
issue of out-of-vocabulary (OOV) words. One
popular approach is to break words down into
their constituent parts, and use a rule based
algorithm to aid the statistical model in recog-
nizing the tenses of unfamiliar words from the
word endings.

In my implementation on the Expectation
Maximization Algorithm, the model’s learned
probabilities never reached the quality that the
standard HMM model’s probabilities did. The
model was far more sporadic in its success,
sometimes receiving scores far higher or lower
than the average. Overall, it seems like my EM
implementation has a hard time getting to the
the best tags, and needs some tweaks to help
it learn better probabilities.

6 Conclusion

The standard HMM model performed vary well,
with an average accuracy of 85.6% on testing
data. The probabilities calculated from the
training text gave a good estimation of what
the machine would see in the test set. A larger
training set would likely allow this model to
achieve results in the range of 90% - 95%. The
HMM model combined with the EM Algorithm
had a hard time learning, and the algorithm
needs more optimization to be able to train
successfully from untagged data. The statisti-
cal approach to modelling language has shown
a good deal of success through time, and es-
pecially in combination with other methods
such as rule sets or n-grams, HMM systems
have produced some of the best results in POS
Tagging.

References
Fatma Al Shamsi and Ahmed Guessoum. 2006. A

hidden markov model-based pos tagger for ara-
bic. In Proceeding of the 8th International Con-
ference on the Statistical Analysis of Textual
Data, France, pages 31–42.

Pooja Alva and Vinay Hegde. 2016. Hidden
markov model for pos tagging in word sense
disambiguation. In 2016 International Confer-
ence on Computation System and Information
Technology for Sustainable Solutions (CSITSS),
pages 279–284. IEEE.

Leonard E Baum, Ted Petrie, George Soules, and
Norman Weiss. 1970. A maximization technique
occurring in the statistical analysis of probabilis-
tic functions of markov chains. The annals of
mathematical statistics, 41(1):164–171.

Phil Blunsom. 2004. Hidden markov models. Lec-
ture notes, August, 15(18-19):48.

Jianfeng Gao and Mark Johnson. 2008. A compar-
ison of bayesian estimators for unsupervised hid-
den markov model pos taggers. In Proceedings
of the Conference on Empirical Methods in Nat-
ural Language Processing, pages 344–352. Asso-
ciation for Computational Linguistics.

Edward Loper and Steven Bird. 2002. Nltk: The
natural language toolkit. In Proceedings of
the ACL-02 Workshop on Effective Tools and
Methodologies for Teaching Natural Language
Processing and Computational Linguistics - Vol-
ume 1, ETMTNLP ’02, page 63–70, USA. Asso-
ciation for Computational Linguistics.

Wes McKinney. 2010. Data Structures for Statis-
tical Computing in Python. In Proceedings of

https://doi.org/10.3115/1118108.1118117
https://doi.org/10.3115/1118108.1118117
https://doi.org/10.25080/Majora-92bf1922-00a
https://doi.org/10.25080/Majora-92bf1922-00a


the 9th Python in Science Conference, pages 56
– 61.

Sindhya K Nambiar, Antony Leons, Soniya Jose,
et al. 2019. Natural language processing based
part of speech tagger using hidden markov
model. In 2019 Third International conference
on I-SMAC (IoT in Social, Mobile, Analytics
and Cloud)(I-SMAC), pages 782–785. IEEE.

Travis Oliphant. 2006. NumPy: A guide to
NumPy. USA: Trelgol Publishing.

http://www.numpy.org/
http://www.numpy.org/

