CNN-based Text Classification with Pre-trained Word2Vec Vectors

Tyler Wengert
UCCs
twengert@Quccs.edu

Abstract

One of the large challenges faced by re-
searchers is text classification. In the
early and mid 2010s, with the introduction
of word vectors and Convolutional Neural
Networks (CNNs), neural networks started
achieving results on classification problems
that met and soon far exceeded the state
of the art. This paper describes the setup
of a text classification CNN based on the
architecture of (Kim, 2014). As previously
shown by Kim’s model, a convolutional net-
work setup like this achieves excellent re-
sults, my model achieving average results
across all data sets of about 84%.

1 Introduction

Text classification has a wide variety of appli-
cations across natural language processing, in-
cluding sentiment analysis and document iden-
tification. For many years, image classification
was achieved through complex mathematical
calculation and hand picked features and fil-
ters. It was tedious work. For classification, we
want the high level of captured feature infor-
mation that convolutions provide, without the
necessity of picking desired features yourself,
and potentially missing important information.
CNN architectures allow researchers to avoid
hand picking features, since the neural network
will learn the features and filters itself. It still
maintains the high level of scrutiny afforded by
traditional convolutions, and will likely learn
things that researchers would miss.

The advantage of using CNNs over other
types of neural networks for classification is
in the way that the CNN looks at its input
data. Nodes focus only on specific parts of
the data, instead of looking at the whole thing,
and determine features locally that are then

integrated into the global set. The convolu-
tional filters that the system uses are applied
to small frames of data instead of the whole
body of data, which allows the system to learn
incredibly well.

2 Related Works

The first CNN architecture was described by
(LeCun et al., 1998). They used two convolu-
tional layers, each followed by a pooling layer,
and finally a fully connected layer as the out-
put layer. The researchers had successfully
developed a model that would learn features
without the need for hand-crafted feature ex-
tractors. Trained on over 500,000 images, they
achieved an accuracy of 82% classifying ASCII
characters on checks. This was an almost 20%
improvement against older models that they
compared against.

CNN architectures did not see widespread
use until 2012, when the AlexNet architecture,
as described by (Krizhevsky et al., 2012), com-
peted in an won the ImageNet Large Scale
Visual Recognition Challenge (ILSVRC). The
AlexNet model consisted of five convolutional
layers, some followed by max-pooling layers,
three fully connected layers, the final one be-
ing a soft-max layer. The results achieved by
AlexNet were state of the art at the time. Kim
(2014) described an architecture for text classi-
fication using multiple convolutional channels.
In The results of all of the channels were merged
using a max-pooling label to come to the best
classification prediction. In addition to using
a multi-channel approach, the system was also
initialized with pre-trained Word2Vec vectors,
as described by (Mikolov et al., 2013). In the
paper, Kim noted that the Word2Vec vectors
seem to be good feature extractors, and show



promise in use with many different data sets.

3 Implementation

This program was built using Python 3.7.6 64-
bit using the IDLE IDE. The program uses the
GenSim package (Rehiifek and Sojka, 2010) to
load in the word vectors from a format file pro-
vided by Google, as well as NumPy (Oliphant,
2006-) for mathematics involving the vectors,
and NLTK (Loper and Bird, 2002) for pre-
processing of the corpora.

3.1 Word2Vec

The Word2Vec representation was described by
(Mikolov et al., 2013), and has since become
a standard for many NLP tasks looking to as-
sess the semantic and syntactic relationships
among words. Word2Vec vectors are highly
dense vectors, especially compared to one-hot
encodings, and can improve training results as
well as shorten training time. These vectors
are especially useful when there isn’t a readily
available corpus of sufficient size for a certain
task.

In this application, the Word2Vec vectors
give the model all the information it needs to
know about word relationships in the English
language, and from their all the model needs
to learn is which ones are typically associated
with either objective or subjective content.

3.2 CNN Architecture

This architecture is largely based on (Kim,
2014), whose model set the standard for clas-
sification when it was published. In his paper,
Kim compared the results from both single and
multi-channel CNNs; here, a version of the sin-
gle channel model is reproduced.

The first layer in the model is the Embed-
ding layer. It is here that the model is fed in
the pre-trained Word2Vec vectors associated
with the corpus words. The Embedding layer’s
‘trainable’ parameter is set to false, since the
model will use the pre-trained word vectors and
there is no need to train its own. In addition to
providing transfer learning to the model, this
reduces the trainable parameters for the sys-
tem to run, and greatly reduces training time.
The Embedding layer feeds into a 1D Convolu-
tional layer. This Convolutional layer uses 32
filters, a kernel size of 4, and a ReLU activa-
tion function. From there, the data is passed

into a Dropout layer, which dropped 50% of
the nodes. After applying dropout, data was
fed into a Max-Pooling layer and a RelU ac-
tivated, dense hidden layer. The output layer
was where this model differed from Kim’s; his
output was a dense soft-max layer, whereas
this model uses a dense sigmoid layer. In his re-
search, Kim worked with classification among
several different categories, and so soft-max
was appropriate. However, this data set only
tests binary categorization. Since there were
only two classifications (0 = objective and 1
= subjective; 0 = male and 1 = female), the
soft-max layer was pushing all the results to
1. The model achieved nearly perfectly 50%
accuracy at every epoch of training as well as
during evaluation. This makes sense, since it
was just guessing 1 every time. The sigmoid
function is much better suited to binary clas-
sification, and the final model shows this by
performing far above 50% accuracy.

4 Results

4.1 Subjectivity Data Set

The model performed quite well on both models,
but produced better results for the Subjectivity
data set.

Test Accuracy
87.9%

Training Accuracy

91.6%

Training accuracy was evaluated by running
the completed model on the same data set that
it was trained on. Test accuracy was evaluated
by running the model on a set of examples that
it had never seen before. The training/testing
split used in the data set was .2, meaning that
8,000 examples comprised the training set, and
the remaining 2,000 were the testing set, out
of 10,000 total examples.

It seems like the subjectivity data set had
greater vocabulary difference between the ob-
jective sentences and the subjective sentences
than did the male and female written blog posts.
Certain concrete descriptor words could be flags
to the system that a sentence is more or less
subjective. The subjective sentences tended to
use more colorful language in describing a film,
and so many words appeared in these examples
that did not in the objective ones. This could
be one reason that the model achieved higher
accuracy on these examples.



4.2 Author Gender Data Set

While it achieved fairly high results, the model
did not do quite as well in labeling a blog au-
thor’s gender as it did in subjectivity classifi-
cation. The training/testing split used in the
data set was .2, meaning that 2,585 examples
comprised the training set, and the remaining
647 were the testing set, out of 3,232 total
examples.

Test Accuracy
76.0%

Training Accuracy
80.4%

As noted in the previous section, the blog
gender data set did not seem to have quite
as large of a difference in vocabulary between
the two classes as did the subjectivity data set.
There are simply less words that are specifically
for usage by males or by females than words
that are specifically for usage in objective state-
ments or in subjective statements. In general,
the differences in the gender data set seemed to
be more structural and tonal. So while the two
genders may have used largely similar vocab-
ularies, the way they present those words was
certainly distinct, and the model did a good
job picking up on those relationships.

As a note, in the previous section and in
this one, the gender data set is described as
having less lexical diversity and more struc-
tural relations, while the subjectivity data set
is described as having the opposite character-
istics. This is not to say that the gender data
does not have any lexical diversity, nor that the
subjectivity has no structural relations, just
that in relating the data sets to each other,
some characteristics were more prominent than
others.

5 Further Work and Improvements

One immediately clear way to improve on this
model would be to upgrade it from a single
channel model to a multi-channel setup, as also
described in (Kim, 2014). The multi-channel
model feeds the same input to many Convolu-
tional layers, each with its own unique hyper-
parameters to evaluate the data, and then pools
the results together to get the best resulting
prediction.

While it is not implemented here, a multi-
channel approach using Tensorflow was re-
searched, and its architecture described. Ten-

sorflow provides two simple ways to vary chan-
nels in a model. Each Convolutional layer is
initialized with a number of filters. The net-
work learns and refines these filters itself during
training. By varying the number of filters that
the convolution applies, you can get a variety
of results from of a Convolutional model, and
so by having, suppose, three channels, apply-
ing 16, 32, and 64 filters respectively, you can
merge all those results and get the benefits
from each convolution. In addition, Tensorflow
also allows the user to specify kernel size. This
is the window over which the filter is applied.
One can also improve or detriment a model by
changing the kernel size, and so this is also a
good variable to change in each channel. Given
three channels, one could apply kernel sizes of
2, 4, and 8 to get different results to merge.
You could vary one or both of these variables
in your channels, conceivably having up to 9
convolutional channels using the 6 previously
mentioned kernel and filter sizes, or more if you
want to use more sizes. Outputs from the Con-
volutional layer undergo Max-Pooling, then the
results are flattened, and concatenated with
the flattened results from each of the other
channels. This concatenated result undergoes
Global Max-Pooling, and is finally output with
a soft-max layer, as in Kim’s multi-channel
model, or for binary classification, a sigmoid
layer.

6 Conclusion

Since CNNs came into wide use for classifica-
tion problems, they have continued to improve
and provide state of the art results. My simple,
single channel CNN shows the excellent results
these methods can achieve, as well as the mean-
ingful, dense features that Convolutional layers
are able to capture from data. While the model
already has quite high results on subjectivity
classification, it has a little more room for im-
provement in gender classification. It is likely
that better results could be achieved by extend-
ing the model to a multi-channel approach.

7 Acknowledgements

The following are papers that were referenced,
but not cited specifically in this paper: (Wang
et al., 2018), (Joulin et al., 2017), (Liu et al.,
2017)



References

Armand Joulin, Edouard Grave, Piotr Bojanowski,
and Tomas Mikolov. 2017. Bag of tricks for effi-
cient text classification. pages 427-431.

Yoon Kim. 2014. Convolutional neural networks
for sentence classification. In Proceedings of
the 2014 Conference on Empirical Methods in
Natural Language Processing (EMNLP), pages
1746-1751, Doha, Qatar. Association for Com-
putational Linguistics.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E
Hinton. 2012. Imagenet classification with deep
convolutional neural networks. In Advances in
neural information processing systems, pages
1097-1105.

Yann LeCun, Léon Bottou, Yoshua Bengio, and
Patrick Haffner. 1998. Gradient-based learning
applied to document recognition. Proceedings
of the IEEE, 86(11):2278-2324.

Jingzhou Liu, Wei-Cheng Chang, Yuexin Wu, and
Yiming Yang. 2017. Deep learning for extreme
multi-label text classification. In Proceedings
of the 40th International ACM SIGIR Confer-
ence on Research and Development in Informa-
tion Retrieval, pages 115-124.

Edward Loper and Steven Bird. 2002. Nltk: The
natural language toolkit. In Proceedings of
the ACL-02 Workshop on Effective Tools and
Methodologies for Teaching Natural Language
Processing and Computational Linguistics - Vol-
ume 1, ETMTNLP ’02, page 63-70, USA. Asso-
ciation for Computational Linguistics.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-
frey Dean. 2013. Efficient estimation of word
representations in vector space. arXiv preprint
arXiv:1301.3781.

Travis Oliphant. 2006—. NumPy: A guide to
NumPy. USA: Trelgol Publishing.

Radim Rehiifek and Petr Sojka. 2010. Software
Framework for Topic Modelling with Large Cor-
pora. In Proceedings of the LREC 2010 Work-
shop on New Challenges for NLP Frameworks,
pages 45-50, Valletta, Malta. ELRA. http://is.
muni.cz/publication/884893 /en.

Shiyao Wang, Minlie Huang, and Zhidong Deng.
2018. Densely connected cnn with multi-scale
feature attention for text classification. In I1J-
CAI, pages 4468-4474.


https://doi.org/10.18653/v1/E17-2068
https://doi.org/10.18653/v1/E17-2068
https://doi.org/10.3115/v1/D14-1181
https://doi.org/10.3115/v1/D14-1181
https://doi.org/10.3115/1118108.1118117
https://doi.org/10.3115/1118108.1118117
http://www.numpy.org/
http://www.numpy.org/
http://is.muni.cz/publication/884893/en
http://is.muni.cz/publication/884893/en

