Generating Poetry via an N-gram Approach

Tyler Wengert
UCCs
twengert@Quccs.edu

Abstract

Poetry generation has been a part of Com-
puter Linguistics and Natural Language
Processing (NLP) for a long time, and has
grown and changed with the field.This pa-
per discusses the challenges and results of
an exercise in N-gram based poetry, one of
the earliest forms of automated text gener-
ation.

1 Introduction

The basic idea behind N-grams is that the com-
puter looks at an n sized group of tokens to
determine the possible choices and their respec-
tive probability of being chosen next. The gen-
eral consensus is that small n-grams (unigrams,
bigrams), don’t capture sufficient information
to get a good sense of the corpus, and that large
n-grams (5-grams, 6-grams), capture so much
information that they begin to just output the
original corpus word for word. With this in
mind, I chose to take a trigram approach for
my generator in order to keep some originality
in the poems while still maintaining as much
of the content and context from the original
corpus as possible.

Of course poetry generation has advanced
a good deal past N-grams, with cutting edge
techniques favoring Long Short-Term Memory
Recurrent Neural Networks and Transformers.
With these mechanisms, computers are able
to learn more about the proper structure of a
sentence, make connections between sentences
regarding context, and get more information
about the meaning of a sentence as a whole.
Poetry generated using these types of systems
has been shown to be of significantly higher
quality to N-gram based approaches.

2 Related Works

N-grams were, for a while, the preferred method
for generating text; Galley et al. (2001) showed
how the n-gram approach could be combined
with the corpus methodology to produce text.
Masataki and Sgisaka (1996) improved on the
basic n-gram scheme by including variable n-
grams to help keep greater contexts in por-
tions of the text. Potamianos and Jelinek
(1998) established that n-gram schemes out-
performed decision tree schemes, n-gram ap-
proaches would continue to be used until the
emergence of machine learning and neural net-
works. Sutskever (2011) was one of the earlier
papers on the subject, and established Recur-
ring Neural Networks (RNNs) as the standard
for text generation. Xie (2017) provides a gen-
eral guide to language modelling and gener-
ation with RNNs, as well as fixes for many
common problems when working with this type
of system. It is an excellent starting point
for researchers to jump into the new and ex-
citing parts of text generation without having
to worry too much about problems with their
Neural Network that have already been solved.

3 Implementation

The entirety of this program was built in
Python 3.7 using the IDLE IDE. The program
includes several general functions, including a
switch to control the current language and a
method to read in the corpus files. Some of the
key functions for the generation of the poetry
are explained in more detail below.

3.1 Tokenization

Tokens are the individual units that the com-
puter uses for comparison and probability calcu-
lation. Words were used as the tokens for this

system instead of characters, following from
(Choi, 2016) who concluded that word tokens
produced better results than character tokens.A
regular expression search was used to tokenize
the corpus, and included punctuation as indi-
vidual tokens, rather than lumping them with
their proceeding word. This seems to be the
standard across many papers that explore text
generation, and so it was maintained here.

3.2 Building the Trigrams

In the trigram scheme, the previous two words
were used to determine the third. To build
the trigrams, a nested Python Dictionary was
implemented. Once the input file had been
tokenized, the Trigram function grabbed the
current word as well as the two following, and
put them through a series of if-statement tests
to see if the word and its combinations existed
already in the dictionary; adding to its count if
it does, or adding any entry if it does not. The
final dictionary has the form:

'word: {’next_ word: {two word: 1,
two_word: 3}, mext_word’: {two_word: 7}}
where word is the first in a sequence of three,
next word is one of the possibilities following
word, and two_word is one of the possibilities
given the word and next word. The numbers
in the deepest layer indicate the count of the
specific trigram.

3.3 The Next Word

Picking the next word to generate is the most
important function for the generator. The sys-
tem needs to pick the next word based on the
previous two, so first it grabs the last two words
that it output, w;_ o and w;_ 1, and search the
dictionary. This gives it a list of all the possible
words wp, that could be next. The system then
weights each trigram so that it occurs in the
list as many times as it occurs in the corpus.
Therefore, a specific word P, has a probability
to be chosen of

occurences|[P¢]

Zsize(P)fl

im0 occurences|Pj]

3.3.1 Challenge: Starting the Poem

As explained above, the algorithm for choosing
the next word is dependent on the last two
words of output. This causes a problem at the
start of the program because there are obviously

no previous words to work with. If the system
had been setup to use unigrams, it could have
selected a random word from the corpus to
start with, but with two words needed to get
the program going, it would frequently generate
two words that never co-occurred in the corpus
and so the program would still get stuck. To
remedy this, the system was given two seed
words for each language. The chosen words
were very general words, and the dictionaries
were examined to find seed words that gave the
generator as many options as possible to start.
For example, the two seeds for English were
'to’ and ’the’, while the seeds for Spanish were
'un’ and ’en’.

4 FEvaluation

To evaluate the poems, 3 categories were de-
fined in which a poem must score well to be
considered "good": readability, content, and
emotion. Readability concerns the structure
of the poem. Does it have proper grammar?
Do the sentences flow correctly? Do adjacent
words make sense together? Content deals with
the meaning and context of the poem. Does
the poem keep a consistent context (ie. it talks
about boats and the ocean for the entire dura-
tion) or does it mix unrelated contexts? Does
the poem give more meaning as a whole than
the words on their own? Finally, following from
content, emotion deals with the response to the
poem. Did the poem elicit emotions from the
reader? How intense were those emotions?

To gather results on my poems, a short test
was written that presented subjects with sam-
ple poems from the various languages and data
set sizes, and asked them to rate each poem on
a scale from 1 - 5 in each of the three categories.
The overall score for a poem is the average of
its three scores. Subjects were given a brief
written explanation of the categories, but re-
ceived no information about the size of the
corpus from which each poem was generated.
The subject pool was my roommates.

Subjects were presented with poems in En-
glish, as well as the three other languages for
which reliable translations to English could be
found: Spanish, Hindi, and Ukrainian. Sub-
jects were given 1 poem from each corpus size,
from each language. In total, they each scored
12 poems.

5 Further Work and Improvements

This is a fairly simple example of poetry gener-
ation, and there are several ways in which the
results could be improved. The largest consid-
eration is the N-gram scheme that was used.
It is possible that a quad-gram setup could’ve
produced better poetry. To implement this, the
Trigram() function would need to be modified
to include another if statement to capture the
extra word of information. The next word()
function would also need to be modified to
search three words back instead of just two. To
further improve readability of the generated
poem, more conditions could be added for the
tokens, such as requiring that the first token
of a line must be a word, not punctuation. To
improve the start of the poem, a bigram scheme
could be implemented in addition to the tri-
grams, so that the system could generate one
random word to start, and from the bigrams
get the following word, then initialize the tri-
gram system with those two, instead of using
seed words.

6 Results
Subject | Language | 1k | 500 | 200
Josh English | 3.0 | 2.6 | 3.0
Spanish | 3.0 | 2.6 | 2.6
Ukrainian | 3.0 | 2.6 | 2.6
Hindi 2.6 | 3.0 | 26
Ryan English | 2.6 | 2.6 | 2.6
Spanish | 3.0 | 2.3 | 2.0
Ukrainian | 2.6 | 2.6 | 2.0
Hindi 26| 30| 26
Luke English | 2.6 | 3.0 | 3.0
Spanish | 3.0 | 3.0 | 2.6
Ukrainian | 3.0 | 2.6 | 2.3
Hindi 3.0 26 | 23

Table 1: The total score, averaged from the
scores in the three categories, for each poem.

7 Conclusions

There are a number of key patterns that arise
in the poem scores. Firstly, the variation in
scores for a single subject between the different
languages is low, meaning that the program
performed approximately equally across all the
languages. This is in line with the results of
(Tucker, 2019). Secondly, a general trend can
be seen among all the languages showing that

the 1000 entry corpus produced better poetry.
There are some notable exceptions to this trend;
the English poem generated from the 200 entry
corpus was scored the same or higher than the
1000 entry English poem by all of the partic-
ipants. This is probably due to the fact that
the small corpus, with less trigram options to
work with, can sometimes get locked into a
unique trigram sequence and output sections
nearly verbatim from the corpus. The 1000 en-
try corpus poems tend to be significantly more
original than the poems generated from smaller
corpora. Some of the subject bias can also be
seen, Ryan generally scored the poems more
strictly then the other two participants. It is
unlikely that this affects the results poorly, be-
cause the variations within Ryan’s score set are
very similar to the variation within the other
two subjects’ scores.

8 Sample Poems

8.1 English
8.1.1 1k

it made us all with perfect nonchalance ! to be
solv’d , the dnieper , the sad noises of hatred
and smoke of my whispering soul to himself ,
unfold himself , the camp of georgia and the
counting ; such from one he lov’d might secretly
be indifferent to

8.1.2 500

earth does not emulate those of the streets ! i
am ready to start in the present to the muzzles
of guns with galloping cavalry , moving with
steady motion , swaying to and fro singing her
husky song , as one encountered gentlefolk upon
a new purchase , scorch’d

8.1.3 200

the well - possess’d of themselves . the wind
does , working like a slumbering woman and
her grand - daughters spun it with foot and
dragoons , and who most cautious ? for i am
august , i understand you , and favor men and
women die ! a

8.2 Spanish
8.2.1 1k

instante que yo ame a dios y a su amada , de
llevar la manana , la portera . de dénde vino
. . victima condenada a vegetar sumida en un

bosque , calla . tendida td aqui . sobre tierras
y mares su horizonte es mi ilusién sobre el

8.2.2 500

donde tu alma en el crepisculo negro en tus
atribuciones cuando el artista tiene un arma
irresistible para ellas el desprecio a los hombres
, mujeres . ninos como una cintura . un corazon
quemado y desde ese dia t1i no sabes ni adivinas
la suprema ventura que se levanté

8.2.3 200

dulce sabor a violines , donde tu alma miré
hasta su interior . rotas estaban tus virgineas
alas que nos ha reunido , no fue la tierra y en
cambio sélo te exijo un carino para mi . ay , si
acerco mi boca palpita , seno de amor libre

8.3 Ukrainian
83.1 1k

3eMJII0 3HOBY TiHb I He 3HATU OpaTIi H00pUit
BiH 9M HI HAM XyaHH - Mapbl OCb Jie Mo BiifHi
? 3aCMaKy€e CajIo K KOJIUCh CTAJI0 3UMHO 0e3
iMIrepii KOMych , Ti IPO KOTOCh iIlle , B¥XKe IO
Till py/ii .
Hac pyKu

THU , CKa3aB coD0i 3a2Ku . HEBXKE IO

8.3.2 500

JIoJielt a 1mobavuB IO 10 MJISIBO BUTAHIIHOBY-
BaB KYIIOJIAMU TTapaco/b IMiJl SKIMHU ITePEX0xKi
XOBaJIM BiJl MeHE MaJjio , HE TaK yXKe MbOTP
BeJIiK OimHa Kisipa BiJ Tops Ijate Hi HAMICTA
HI IIepeMor I1ie 1 TeJIECKOII . 1 Bce Te y cTaJiil
CBIJTOMOCTI , IO CIIpaBa B TOMY , Ta MEHIIIE 3

8.3.3 200

i madu , i MHOXKATHCS , JIOBIIAKOTH TiHI . OT
i mobpe , IO eBepecT 3a rpaTaMu , B IO IIi-
MIIJTH KAMEHIOKH ¥ JIyOWHE . BOPOHE YOpHWUIA !
JIapEeMHO TH Kpsidell | pigHee CJIOBO XKUE 1 €
Gauwuin 7 pifHAa MOS , TH CYYaCHOTO MHUCTEITBa
CcyOCTUTYT . 1 TBEpE3y XOJIOIHY

9 Acknowledgements

There are several papers that I read to help
me with this project that I did not directly
reference. For n-gram models: (Jelinek, 1985),
(Kurzweil and Keklak, 2007), (Fillmore). For
RNNs/LSTMs: (Bena and Kalita, 2020), (Xie
et al., 2017), (Potash et al., 2015).

References

Brendan Bena and Jugal Kalita. 2020. Introducing
aspects of creativity in automatic poetry gener-
ation. arXiv preprint arXiv:2002.02511.

Fazekas G. Sandler M Choi, K. 2016. Text-based
Istm networks for automatic music composition.
arXiv preprint arXiv:1604.05358.

Nathanael Fillmore. A romantic poetry genera-

tion.

Michel Galley, Eric Fosler-Lussier, and Alexandros
Potamianos. 2001. Hybrid natural language gen-
eration for spoken dialogue systems. In Sev-
enth European Conference on Speech Commu-
nication and Technology.

Frederick Jelinek. 1985. Markov Source Model-
ing of Text Generation, pages 569-591. Springer
Netherlands, Dordrecht.

Raymond Kurzweil and John A Keklak. 2007. Ba-
sic poetry generation. US Patent 7,184,949.

Hirokazu Masataki and Yoshinori Sgisaka. 1996.
Variable-order n-gram generation by word-class
splitting and consecutive word grouping. In
1996 IEEE International Conference on Acous-
tics, Speech, and Signal Processing Conference
Proceedings, volume 1, pages 188-191. IEEE.

Gerasimos Potamianos and Frederick Jelinek. 1998.
A study of n-gram and decision tree letter lan-
guage modeling methods. Speech Communica-
tion, 24(3):171-192.

Peter Potash, Alexey Romanov, and Anna
Rumshisky. 2015. Ghostwriter: Using an lstm
for automatic rap lyric generation. In Pro-
ceedings of the 2015 Conference on Empirical
Methods in Natural Language Processing, pages
1919-1924.

Martens J. Hinton G. E Sutskever, I. 2011. Gener-
ating text with recurrent neural networks. Pro-
ceedings of the 28th international conference on
machine learning (ICML-11), pages 1017-1024.

Shaun C Tucker. 2019. Transfer learning across
languages with poetry.

Stanley C Xie, Ruchir Rastogi, and Max Chang.
2017. Deep poetry: Word-level and character-
level language models for shakespearean sonnet
generation.

Ziang Xie. 2017. Neural text generation: A practi-
cal guide. arXiv preprint arXiv:1711.09534.

https://doi.org/10.1007/978-94-009-5113-6_28
https://doi.org/10.1007/978-94-009-5113-6_28

